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Hawking Radiation from a General Spherically 
Symmetric Evaporating Black Hole 
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By means of generalized tortoise coordinates both the Klein-Gordon equation 
and the Dirac equation are reduced near the event horizon of a general 
spherically symmetric evaporating black hole. The location and the temperature 
of the event horizon are given automatically without calculating the energy- 
momentum tensor. The Hawking thermal spectra of the Klein Gordon particles 
and the Dirac particles are obtained, respectively. 

Recently we have proposed a new method for determining the 
Hawking effect of a general spherically symmetric evaporating black hole 
without calculating the vacuum expectation value of the renormalized 
energy,momentum tensor (Zhao and Dai, 1991, 1992). In this paper, the 
method is improved, and not only the Klein-Gordon equation, but also 
the Dirac equation are studied. 

The line element of the space-time where there exists a general 
spherically symmetric evaporating black hole is given as (Balbinot and 
Barletta, 1989) 

ds2= -e2O ( l -2-~-mr ) dV2 + 2e~ dv dr + r2 d~2 (1)  

where m = m(r, v), ~ = O(r, v). After the separation of variables 

1 
~ , m  = -- p(r, v) Y,m(O, ~)) (2) 

r 

the radial part of the Klein-Gordon equation is given as 

( - ~ )  c~2p ~r2 + 2e 02P 63p 
1 -  ~ ~re av+ A ~ r -  B p = O  (3) 
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where 

A=(l_2_~mr)OtflOr 2(m'r-m)r 2 

A l(l+ 1) 
B-=--+#~+r r - - 5 ~  

0m ~' 0~ m ' -  = 
Or =- ~r 

(4) 

Introducing the generalized tortoise coordinates 

r ,  = r + 1 l n [ r -  rn(v)] 
z z  

/35 = V - - U  0 

(5) 

we can write equation (3) as 

[ 2 z ( r -  rH) + 1](r--2m)e ~ --2r?H 82p 82p 
+ 2 - -  

2zr(r -- rn) Or2, Or, Or, 

{ 2 r f n - ( r -  2m)e ~' } 8p 
+ r(r--rn)[2~(r--rH)+ 1] ~-Aee' 8r, 

2 ~ ( r -  rn)e~B 
2 ~ ( r - r n ) + l  p = O  

(6) 

where rn is the event horizon. • is an adjustable temperature parameter. 
It is constant under the tortoise transformation (5). r H can be given by the 
null-surface condition 

gf gf 0 (7) 
g,,V 8x ~' 8x v 

Substituting the metric (1) into equation (7), we have 

dr 
( r -  2m)e* - 2r-~v= O (8) 

Evidently, rn(v) is the solution of the equation. This means 

r H = 2M/(1 - 2~:ne -~') 

where 
drn 

?H-- dr'  M - m ( r = r n ,  v) 

(9) 
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When r goes to rH(vo) and v goes to v0, using equation (9), we can 
reduce equation (6) to 

where 

02p 02p 
A ~ - 7 5 - 2 + 2 - -  0 (10) 

Or, Or, 0v, 

[2~(r -- rn) + 1 ](r  -- 2 m ) e  ~ --  2rf'H 
A =  lim 

~ ~.l~o) 2 z r ( r  - rH) 

Selecting the adjustable parameter ~ as 

1 - 2m' - -2fHe  ~'(1 -- rH@') 

we have A = 1, and equation (10) can be reduced to 

02p a2p 
- - +  2 - - =  0 
0r2. 0r .  0v. 

(11) 

v = vO 

(12) 

(13) 

Its ingoing wave solution and outgoing wave solution are, respectively, 

Pin = e i~v. (14) 

Pout = e ir (15) 

Equation (15) can be rewritten as 

Pout = e i~176 i~'/~ (16) 

It is not analytical at the horizon r = r H .  We extend it by analytical 
continuation to the inside of the black hole through the lower half complex 
r-plane 

(r - rH) --+ Ir-- r r i I e  -i'~ = (rH -- r ) e  -i'~ (17) 

Pout-+ P 'ou ,=e  i~176 e'~"/~ (18) 

The scattering probability of the outgoing wave at the horizon is 

_ ~  2 = e -2=~176 (19) 
P Out 
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Following Damour  and Ruffini (1976) and Sannan (1988), it is easy to 
obtain the spectrum of radiation of the Kle in-Gordon particles from the 
black hole 

No) = [exp(co/kB T) - 1 ] - - 1  (20) 

x 1 1 - - 2 m ' - - 2 ~ H e - ~ ( 1 - - r H ~ ' )  
T - 2 7 t k B  27zkB 4 M  + 2rH(e 4,_1 ) (21) 

where kB is Boltzmann's constant. 
Now let us study the Hawking radiation of the Dirac particles from 

the black hole. 
With the signature - 2 ,  the spinor base form of the Dirac equation in 

curved space-time is (Page, 1976) 

~/-2 V .bP~  + i # o O b = O  
(22) 

x / 2  V,bQO + i # o P b = O  

where #o is the mass of the Dirac particle, pa, Q~, and Vab are, respectively, 
the 2-component spinors and the covariant spinor differentiation expressed 
with spinor base components. It can be transformed into four coupled 
equations, 

(D + e - P)F1 + ( g +  ~ - a ) f2  = i#oG1/x/-2 

(A + # - ?) r2  + (~5 + fl -- z-)F 1 = i#oG2/x/-2 

(D + g -  f i )G 2 - (6 + ~c - ~ ) G ,  = i # o F 2 / x / 2  (23) 

(A + fi - ~)G1 - (E + f i -  i ) G 2  = i#oF1/~/-2 

where 

Fi = po, F2 = p1, Gl = ~i ,  G 2  = _ ~ O  

D = 00O = l~3., d = 01i = n'~3. (24) 

6 = ~?0i = m"0. ,  3 = rh~0~ 

#, ?, fl, r, e, p, ~c, and a are the special designations of the spin coefficients 
defined by Newman and Penrose (1962). l", n ~, m ~, and th" are the null 
tetrad vectors, 

lpl " = n . n "  = m . m  ~ = rhurh" = 0 

l~,m" = lurh~' = n~m" = nurhs' = 0 
(25) 

l~,n ~' = - m~rh ~' = 1 

g~., = l .nv + n~,l~ - m j h  v - r~,m~ 
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In the general spherically symmetric spacetime (1) they are 

1~ = ( - e  q', 0, 0, 0) 

n .=  [ - (1 /2)  eO(1 -2m/r), 1, 0, 0] 

m. = (r/x/2)(O, O, 1, -- i sin 0) 

r~. = (r/x/2)(O , O, 1, i sin 0) 

and 

l"= (0 1 0 0) 

n " = [  e ~ (1 /2 ) (1  2m/r) ,O,O] 

m ~ = (l/x/2 r)(0, 0, 1,//sin 0) 

rh" = (l/x/2 r)(0 0, 1, - / /sin 0) 

(26) 

(27) 

Then, equation (23) can be reduced to 

0+14"+ 7 x/2 F , - - -  + +~ctg 0 F2 = t---7 G1 sia 0 a; 

e-*av 2 ar 2r 

+ - - x f 2  r sin 0 0~ +~ctg 0 F=i~a2 
1 1 

x / ~ r ( ;  sini0~q~ +2ctgO) G'+(~r+~tP'  t ! )  G2=ix/~t~~ F2 (28) 

1 i 0 1 0 ) G 2 _ ( e _ ~ _ _ + l ( l _ 2 m r ) O  
x f ~ r ( ;  s in0&b+2 ctg / . . _ _ j e v  g ~r 

+2rrl ( 1 - m )  o ' - ~ r ) G l = i  It~ 1 

After the separation of variables 

Fl=eiV~R (v,r) S (0) 

F2 = eiV+R+(v r) S+(O) 
(29) 

Gl=eiVOR+(v, r) S (0) 

G2 = eiV~R _ (v, r) S+ (0) 
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the radial part of the decoupled Dirac equation about R+ can be written 
as 

ee,(1 27rn_)02R+ 02R+ (~_ if' /2/% )0R+ 
~-r2 + 2 ~ - v +  - -  -I 2-il%rJ Ov 

+ e4' [ (1-- 2--~mr ) O' -- 3m---~' + -~ (r -- m 

+2~i~or 1 -  ~ - r  +B+R+=0 (30) 

where 

{( 2m']~l ~ 1 2m' m" 1 
B +  = e ~ '  1 - 7 / L a ( r  4'" - ~- 7 r ;2 

} + ~ r  2 ( r -m)O' -~(22+#~r  2) 

2 -- i#or Lr \ 

~b" - 0 2 ~  m "  = a2m 
Or 2' Or 2 

(31) 

Using the generalized tortoise coordinates (5), we can write equation (30) 
as 

[2~(r- rn) + 1](r-2m)eO-2rin 02R+ 02R+ 
~2 

2xr(r - rn) &2 Or, Or, 

f 2 N n - ( r - 2 m )  e~" ( 2 7 _ m r )  +lr ( r_rn)E2x(r_rH)+l]+ 1 -  ~,e4 " 2(re'r-m) , r2 e ~' 

3r-5me~ m'e ,  + i#o (1_27m) e~_ /~H 
4 r ~  ---7- 2--i#o r 2z(r-- rn) + 1 

i2#o ~'~OR++ 2x(r-rn) 
• - q / + , Z -  iuorJ)  Or, 2x-77ZT~+ 1 2 -  iuorJ 

x 0R+ + 0v, B+R+)]=0  (32) 

When r goes to rn(vo) and v goes to Vo, the equation can be reduced to 

02R+ 02R+ E aR+ =0 (33) 
0r2, + 2 0v, Or, + Or, 
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where 

m' 
E = - -  1 -  e~ + ? H O ' - - - - e  ~ (34) 

FH FH 

Here, we have used equations (9) and (12). The ingoing wave solution and 
the outgoing wave solution are, respectively, 

R i + = e  ion,. (35) 

R ~  ut = e i'~v*e2i~ F~r. (r > r . )  (36) 

The outgoing wave can be rewritten as 

R +  ut = e-i'~ rH) i~ e er. (37) 

It is not analytical at the horizon. But we can continue the outgoing wave 
from outside of the black hole into its inside, so we have 

R'out=e-i~~ er*e~~ (r < rH) (38) 

The relative scattering probability produced by the horizon is 

= e  -2~/~ (39) 
Rout 

Then we obtain the spectrum of the Hawking radiation of the Dirac 
particles from the black hole (Sannan, 1988) 

N~o = [exp(co/kB T) + 1 ] 1 (40) 

where T is given by equation (21). 
In equations (9) and (21), both the location and the temperature of 

the event horizon of the black hole are shown. In equations (20) and (40), 
we give the Hawking thermal radiation spectra of the Klein-Gordon 
particles and the Dirac particles, respectively. When the radiation is very 
weak, ~H (hence rh) will be very small. If we only consider the first 
approximation of rh, equations (9) and (21) reduce to those obtained by 
Balbinot and Barletta (1989), 

rH = 2M(1 + 435/) (41) 

1 1 - 2 m ' - 4 3 ; I  
T -  (42) 

2~kB 4M 
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So, our  me thod  is valid,  and  is s impler  and  more  exact  than  the old  
me thod  for ca lcula t ing the vacuum expec ta t ion  value of  the r enormal i zed  
e ne rgy -momen tum tensor.  
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